Skip to contents

The following is reproduced from the SFE vignette.

Visium Space Ranger output

10x Genomics Space Ranger output from a Visium experiment can be read in a similar manner as in SpatialExperiment; the SpatialFeatureExperiment SFE object has the spotPoly column geometry for the spot polygons. If the filtered matrix (i.e. only spots in the tissue) is read in, then a column graph called visium will also be present for the spatial neighborhood graph of the Visium spots on the tissue. The graph is not computed if all spots are read in regardless of whether they are on tissue.

dir <- system.file("extdata", package = "SpatialFeatureExperiment")
sample_ids <- c("sample01", "sample02")
(samples <- file.path(dir, sample_ids, "outs"))
#> [1] "/home/runner/work/_temp/Library/SpatialFeatureExperiment/extdata/sample01/outs"
#> [2] "/home/runner/work/_temp/Library/SpatialFeatureExperiment/extdata/sample02/outs"

The results for each tissue capture should be in the outs directory. Inside the outs directory there are two directories: raw_reature_bc_matrix has the unfiltered gene count matrix, and spatial has the spatial information.

list.files(samples[1])
#> [1] "filtered_feature_bc_matrix" "spatial"

The DropletUtils package has a function read10xCounts() which reads the gene count matrix. SPE reads in the spatial information, and SFE uses the spatial information to construct Visium spot polygons and spatial neighborhood graphs. Inside the spatial directory:

list.files(file.path(samples[1], "spatial"))
#> [1] "aligned_fiducials.jpg"              "barcode_fluorescence_intensity.csv"
#> [3] "detected_tissue_image.jpg"          "scalefactors_json.json"            
#> [5] "spatial_enrichment.csv"             "tissue_hires_image.png"            
#> [7] "tissue_lowres_image.png"            "tissue_positions.csv"

tissue_lowres_image.png is a low resolution image of the tissue.

Inside the scalefactors_json.json file:

fromJSON(file = file.path(samples[1], "spatial", "scalefactors_json.json"))
#> $tissue_hires_scalef
#> [1] 0.0751202
#> 
#> $tissue_lowres_scalef
#> [1] 0.02253606
#> 
#> $fiducial_diameter_fullres
#> [1] 304.6116
#> 
#> $spot_diameter_fullres
#> [1] 188.5691

spot_diameter_fullres is the diameter of each Visium spot in the full resolution H&E image in pixels. tissue_hires_scalef and tissue_lowres_scalef are the ratio of the size of the high resolution (but not full resolution) and low resolution H&E image to the full resolution image. fiducial_diameter_fullres is the diameter of each fiducial spot used to align the spots to the H&E image in pixels in the full resolution image.

The tissue_positions_list.csv file contains information for the spatial coordinates of the spots and whether each spot is in tissue as automatically detected by Space Ranger or manually annotated in the Loupe browser. If the polygon of the tissue boundary is available, whether from image processing or manual annotation, geometric operations as supported by the SFE package, which is based on the sf package, can be used to find which spots intersect with the tissue and which spots are contained in the tissue. Geometric operations can also find the polygons of the intersections between spots and the tissue, but the results can get messy since the intersections can have not only polygons but also points and lines.

Now we read in the toy data that is in the Space Ranger output format. Since Bioconductor version release (Voyager version 1.2.0), the image is read as a SpatRaster object with the terra package, so it is not loaded into memory unless necessary. When plotting a large image, it will be downsampled and thus not fully loaded into memory. The unit can be set with the unit argument, and can be either pixels in full resolution image or microns. The latter is calculated from the former based on spacing between spots, which is known to be 100 microns.

(sfe3 <- read10xVisiumSFE(samples, dirs = samples, sample_id = sample_ids, 
                          type = "sparse", data = "filtered", images = "lowres", 
                          unit = "full_res_image_pixel"))
#> >>> 10X Visium data will be loaded: outs
#> >>> Adding spatial neighborhood graph to sample01
#> >>> 10X Visium data will be loaded: outs
#> >>> Adding spatial neighborhood graph to sample02
#> class: SpatialFeatureExperiment 
#> dim: 5 25 
#> metadata(0):
#> assays(1): counts
#> rownames(5): ENSG00000014257 ENSG00000142515 ENSG00000263639
#>   ENSG00000163810 ENSG00000149591
#> rowData names(14): symbol Feature.Type ...
#>   Median.Normalized.Average.Counts_sample02
#>   Barcodes.Detected.per.Feature_sample02
#> colnames(25): GTGGCGTGCACCAGAG-1 GGTCCCATAACATAGA-1 ...
#>   TGCAATTTGGGCACGG-1 ATGCCAATCGCTCTGC-1
#> colData names(10): in_tissue array_row ... channel3_mean channel3_stdev
#> reducedDimNames(0):
#> mainExpName: NULL
#> altExpNames(0):
#> spatialCoords names(2) : pxl_col_in_fullres pxl_row_in_fullres
#> imgData names(4): sample_id image_id data scaleFactor
#> 
#> unit: full_res_image_pixel
#> Geometries:
#> colGeometries: spotPoly (POLYGON) 
#> 
#> Graphs:
#> sample01: col: visium
#> sample02: col: visium

Space Ranger output includes the gene count matrix, spot coordinates, and spot diameter. The Space Ranger output does NOT include nuclei segmentation or pathologist annotation of histological regions. Extra image processing, such as with ImageJ and QuPath, are required for those geometries.

Vizgen MERFISH output

The commercialized MERFISH from Vizgen has a standard output format, that can be read into SFE with readVizgen(). Because the cell segmentation from each field of view (FOV) has a separate HDF5 file and a MERFISH dataset can have hundreds of FOVs, we strongly recommend reading the MERFISH output on a server with a large number of CPU cores. Alternatively, some but not all MERFISH datasets store cell segmentation in a parquet file, which can be more easily read into R. This requires the installation of arrow. Here we read a toy dataset which is the first FOV from a real dataset:

fp <- tempdir()
dir_use <- VizgenOutput(file_path = file.path(fp, "vizgen"))
#> see ?SFEData and browseVignettes('SFEData') for documentation
#> downloading 1 resources
#> retrieving 1 resource
#> loading from cache
#> The downloaded files are in /tmp/RtmpY5flFa/vizgen/vizgen_cellbound
list.files(dir_use)
#> [1] "cell_boundaries"          "cell_boundaries.parquet" 
#> [3] "cell_by_gene.csv"         "cell_metadata.csv"       
#> [5] "detected_transcripts.csv" "images"

The optional add_molecules argument can be set to TRUE to read in the transcript spots

(sfe_mer <- readVizgen(dir_use, z = 3L, image = "PolyT", add_molecules = TRUE))
#> >>> 1 `.parquet` files exist:
#> /tmp/RtmpY5flFa/vizgen/vizgen_cellbound/cell_boundaries.parquet
#> >>> using -> /tmp/RtmpY5flFa/vizgen/vizgen_cellbound/cell_boundaries.parquet
#> >>> Cell segmentations are found in `.parquet` file
#> >>> Checking polygon validity
#> >>> Reading transcript coordinates
#> >>> Converting transcript spots to geometry
#> >>> Writing reformatted transcript spots to disk
#> class: SpatialFeatureExperiment 
#> dim: 88 1058 
#> metadata(0):
#> assays(1): counts
#> rownames(88): CD4 TLL1 ... Blank-38 Blank-39
#> rowData names(0):
#> colnames(1058): 112824700230101249 112824700230101252 ...
#>   112824700330100920 112824700330100974
#> colData names(11): fov volume ... solidity sample_id
#> reducedDimNames(0):
#> mainExpName: NULL
#> altExpNames(0):
#> spatialCoords names(2) : center_x center_y
#> imgData names(4): sample_id image_id data scaleFactor
#> 
#> unit: micron
#> Geometries:
#> colGeometries: centroids (POINT), cellSeg (POLYGON) 
#> rowGeometries: txSpots (MULTIPOINT) 
#> 
#> Graphs:
#> sample01:

The unit is always in microns. To make it easier and faster to read the data next time, the processed cell segmentation geometries and transcript spots are written to the same directory where the data resides:

list.files(dir_use)
#> [1] "cell_boundaries"              "cell_boundaries.parquet"     
#> [3] "cell_by_gene.csv"             "cell_metadata.csv"           
#> [5] "detected_transcripts.csv"     "detected_transcripts.parquet"
#> [7] "images"

10X Xenium output

SFE supports reading the output from Xenium Onboarding Analysis (XOA) v1 and v2 with the function readXenium(). Especially for XOA v2, arrow is strongly recommended. The cell and nuclei polygon vertices and transcript spot coordinates are in parquet files Similar to readVizgen(), readXenium() makes sf data frames from the vertices and transcript spots and saves them as GeoParquet files.

dir_use <- XeniumOutput("v2", file_path = file.path(fp, "xenium"))
#> see ?SFEData and browseVignettes('SFEData') for documentation
#> loading from cache
#> The downloaded files are in /tmp/RtmpY5flFa/xenium/xenium2
list.files(dir_use)
#>  [1] "cell_boundaries.csv.gz"     "cell_boundaries.parquet"   
#>  [3] "cell_feature_matrix.h5"     "cells.csv.gz"              
#>  [5] "cells.parquet"              "experiment.xenium"         
#>  [7] "morphology_focus"           "nucleus_boundaries.csv.gz" 
#>  [9] "nucleus_boundaries.parquet" "transcripts.csv.gz"        
#> [11] "transcripts.parquet"
# RBioFormats issue: https://github.com/aoles/RBioFormats/issues/42
try(sfe_xen <- readXenium(dir_use, add_molecules = TRUE))
#> >>> Must use gene symbols as row names when adding transcript spots.
#> >>> Cell segmentations are found in `.parquet` file(s)
#> >>> Reading cell and nucleus segmentations
#> >>> Making MULTIPOLYGON nuclei geometries
#> >>> Making POLYGON cell geometries
#> Sanity checks on cell segmentation polygons:
#> >>> ..found 132 cells with (nested) polygon lists
#> >>> ..applying filtering
#> >>> Checking polygon validity
#> >>> Saving geometries to parquet files
#> >>> Reading cell metadata -> `cells.parquet`
#> >>> Reading h5 gene count matrix
#> >>> filtering cellSeg geometries to match 6272 cells with counts > 0
#> >>> filtering nucSeg geometries to match 6158 cells with counts > 0
#> >>> Reading transcript coordinates
#> >>> Converting transcript spots to geometry
#> >>> Writing reformatted transcript spots to disk
#> >>> Total of 116 features/genes with no transcript detected or `min_phred` < 20 are removed from SFE object
#> >>> To keep all features -> set `min_phred = NULL`
(sfe_xen <- readXenium(dir_use, add_molecules = TRUE))
#> >>> Must use gene symbols as row names when adding transcript spots.
#> >>> Preprocessed sf segmentations found
#> >>> Reading cell and nucleus segmentations
#> >>> Reading cell metadata -> `cells.parquet`
#> >>> Reading h5 gene count matrix
#> >>> filtering cellSeg geometries to match 6272 cells with counts > 0
#> >>> filtering nucSeg geometries to match 6158 cells with counts > 0
#> >>> Reading transcript coordinates
#> >>> Total of 116 features/genes with no transcript detected or `min_phred` < 20 are removed from SFE object
#> >>> To keep all features -> set `min_phred = NULL`
#> class: SpatialFeatureExperiment 
#> dim: 398 6272 
#> metadata(1): Samples
#> assays(1): counts
#> rownames(398): ABCC11 ACE2 ... UnassignedCodeword_0488
#>   UnassignedCodeword_0497
#> rowData names(3): ID Symbol Type
#> colnames(6272): abclkehb-1 abcnopgp-1 ... odmgoega-1 odmgojlc-1
#> colData names(9): transcript_counts control_probe_counts ...
#>   nucleus_area sample_id
#> reducedDimNames(0):
#> mainExpName: NULL
#> altExpNames(0):
#> spatialCoords names(2) : x_centroid y_centroid
#> imgData names(4): sample_id image_id data scaleFactor
#> 
#> unit: micron
#> Geometries:
#> colGeometries: centroids (POINT), cellSeg (POLYGON), nucSeg (MULTIPOLYGON) 
#> rowGeometries: txSpots (MULTIPOINT) 
#> 
#> Graphs:
#> sample01:
list.files(dir_use)
#>  [1] "cell_boundaries_sf.parquet"    "cell_boundaries.csv.gz"       
#>  [3] "cell_boundaries.parquet"       "cell_feature_matrix.h5"       
#>  [5] "cells.csv.gz"                  "cells.parquet"                
#>  [7] "experiment.xenium"             "morphology_focus"             
#>  [9] "nucleus_boundaries_sf.parquet" "nucleus_boundaries.csv.gz"    
#> [11] "nucleus_boundaries.parquet"    "transcripts.csv.gz"           
#> [13] "transcripts.parquet"           "tx_spots.parquet"

Nanostring CosMX output

This is similar to readVizgen() and readXenium(), except that the output doesn’t come with images.

dir_use <- CosMXOutput(file_path = file.path(fp, "cosmx"))
#> see ?SFEData and browseVignettes('SFEData') for documentation
#> downloading 1 resources
#> retrieving 1 resource
#> loading from cache
#> The downloaded files are in /tmp/RtmpY5flFa/cosmx/cosmx
list.files(dir_use)
#> [1] "Run5642_S3_Quarter_exprMat_file.csv" 
#> [2] "Run5642_S3_Quarter_metadata_file.csv"
#> [3] "Run5642_S3_Quarter_tx_file.csv"      
#> [4] "Run5642_S3_Quarter-polygons.csv"
(sfe_cosmx <- readCosMX(dir_use, add_molecules = TRUE))
#> >>> Constructing cell polygons
#> >>> Checking polygon validity
#> >>> Reading transcript coordinates
#> >>> Converting transcript spots to geometry
#> >>> Writing reformatted transcript spots to disk
#> class: SpatialFeatureExperiment 
#> dim: 960 27 
#> metadata(0):
#> assays(1): counts
#> rownames(960): Chrna4 Slc6a1 ... NegPrb9 NegPrb10
#> rowData names(0):
#> colnames(27): 367_1 368_1 ... 581_1 583_1
#> colData names(19): fov cell_ID ... Max.DAPI sample_id
#> reducedDimNames(0):
#> mainExpName: NULL
#> altExpNames(0):
#> spatialCoords names(2) : CenterX_global_px CenterY_global_px
#> imgData names(0):
#> 
#> unit: full_res_image_pixel
#> Geometries:
#> colGeometries: centroids (POINT), cellSeg (POLYGON) 
#> rowGeometries: txSpots (MULTIPOINT) 
#> 
#> Graphs:
#> sample01:
list.files(dir_use)
#> [1] "cell_boundaries_sf.parquet"          
#> [2] "Run5642_S3_Quarter_exprMat_file.csv" 
#> [3] "Run5642_S3_Quarter_metadata_file.csv"
#> [4] "Run5642_S3_Quarter_tx_file.csv"      
#> [5] "Run5642_S3_Quarter-polygons.csv"     
#> [6] "tx_spots.parquet"

Other technologies

A read function for Visium HD is in progress. Contribution for Akoya, Molecular Cartography, and Curio Seeker are welcome. See the issues.

Create SFE object from scratch

An SFE object can be constructed from scratch with the assay matrices and metadata. In this toy example, dgCMatrix is used, but since SFE inherits from SingleCellExperiment (SCE), other types of arrays supported by SCE such as delayed arrays should also work.

# Visium barcode location from Space Ranger
data("visium_row_col")
coords1 <- visium_row_col[visium_row_col$col < 6 & visium_row_col$row < 6,]
coords1$row <- coords1$row * sqrt(3)

# Random toy sparse matrix
set.seed(29)
col_inds <- sample(1:13, 13)
row_inds <- sample(1:5, 13, replace = TRUE)
values <- sample(1:5, 13, replace = TRUE)
mat <- sparseMatrix(i = row_inds, j = col_inds, x = values)
colnames(mat) <- coords1$barcode
rownames(mat) <- sample(LETTERS, 5)

This should be sufficient to create an SPE object, and an SFE object, even though no sf data frame was constructed for the geometries. The constructor behaves similarly to the SPE constructor. The centroid coordinates of the Visium spots in the example can be converted into spot polygons with the spotDiameter argument, which can also be relevant to other technologies with round spots or beads, such as Slide-seq. Spot diameter in pixels in full resolution images can be found in the scalefactors_json.json file in Space Ranger output.

sfe3 <- SpatialFeatureExperiment(list(counts = mat), colData = coords1,
                                spatialCoordsNames = c("col", "row"),
                                spotDiameter = 0.7)

More geometries and spatial graphs can be added after calling the constructor.

Geometries can also be supplied in the constructor.

# Convert regular data frame with coordinates to sf data frame
cg <- df2sf(coords1[,c("col", "row")], c("col", "row"), spotDiameter = 0.7)
rownames(cg) <- colnames(mat)
sfe3 <- SpatialFeatureExperiment(list(counts = mat), colGeometries = list(foo = cg))

Coercion from SpatialExperiment

SPE objects can be coerced into SFE objects. If column geometries or spot diameter are not specified, then a column geometry called “centroids” will be created.

spe <- SpatialExperiment::read10xVisium(samples, sample_ids, type = "sparse", 
                                        data = "filtered", 
                                        images = "hires", load = FALSE)

For the coercion, column names must not be duplicate.

colnames(spe) <- make.unique(colnames(spe), sep = "-")
rownames(spatialCoords(spe)) <- colnames(spe)
(sfe3 <- toSpatialFeatureExperiment(spe))
#> class: SpatialFeatureExperiment 
#> dim: 5 25 
#> metadata(0):
#> assays(1): counts
#> rownames(5): ENSG00000014257 ENSG00000142515 ENSG00000263639
#>   ENSG00000163810 ENSG00000149591
#> rowData names(1): symbol
#> colnames(25): GTGGCGTGCACCAGAG-1 GGTCCCATAACATAGA-1 ...
#>   TGCAATTTGGGCACGG-1 ATGCCAATCGCTCTGC-1
#> colData names(4): in_tissue array_row array_col sample_id
#> reducedDimNames(0):
#> mainExpName: NULL
#> altExpNames(0):
#> spatialCoords names(2) : pxl_col_in_fullres pxl_row_in_fullres
#> imgData names(4): sample_id image_id data scaleFactor
#> 
#> unit:
#> Geometries:
#> colGeometries: centroids (POINT) 
#> 
#> Graphs:
#> sample01: 
#> sample02:

If images are present in the SPE object, they will be converted into SpatRaster when the SPE object is converted into SFE. Plotting functions in the Voyager package relies on SpatRaster to plot the image behind the geometries.

Coercion from Seurat

Seurat objects can be coerced into SFE objects though coercion from SFE to Seurat is not yet implemented.

dir_extdata <- system.file("extdata", package = "SpatialFeatureExperiment")
obj_vis <- readRDS(file.path(dir_extdata, "seu_vis_toy.rds"))
sfe_conv_vis <-
  toSpatialFeatureExperiment(x = obj_vis, 
                             image_scalefactors = "lowres",
                             unit = "micron",
                             BPPARAM = BPPARAM)
sfe_conv_vis

Session info

# Clean up
unlink(file.path(fp, "vizgen"), recursive = TRUE)
unlink(file.path(fp, "xenium"), recursive = TRUE)
unlink(file.path(fp, "cosmx"), recursive = TRUE)
sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 22.04.5 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0
#> 
#> locale:
#>  [1] LC_CTYPE=C.UTF-8          LC_NUMERIC=C             
#>  [3] LC_TIME=C.UTF-8           LC_COLLATE=C.UTF-8       
#>  [5] LC_MONETARY=C.UTF-8       LC_MESSAGES=C.UTF-8      
#>  [7] LC_PAPER=C.UTF-8          LC_NAME=C.UTF-8          
#>  [9] LC_ADDRESS=C.UTF-8        LC_TELEPHONE=C.UTF-8     
#> [11] LC_MEASUREMENT=C.UTF-8    LC_IDENTIFICATION=C.UTF-8
#> 
#> time zone: UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] RBioFormats_1.6.0              SFEData_1.8.0                 
#> [3] Matrix_1.7-1                   rjson_0.2.23                  
#> [5] Voyager_1.8.1                  SpatialFeatureExperiment_1.9.4
#> 
#> loaded via a namespace (and not attached):
#>   [1] splines_4.4.2               bitops_1.0-9               
#>   [3] filelock_1.0.3              tibble_3.2.1               
#>   [5] R.oo_1.27.0                 lifecycle_1.0.4            
#>   [7] sf_1.0-19                   edgeR_4.4.0                
#>   [9] lattice_0.22-6              MASS_7.3-61                
#>  [11] magrittr_2.0.3              limma_3.62.1               
#>  [13] sass_0.4.9                  rmarkdown_2.29             
#>  [15] jquerylib_0.1.4             yaml_2.3.10                
#>  [17] sp_2.1-4                    DBI_1.2.3                  
#>  [19] multcomp_1.4-26             abind_1.4-8                
#>  [21] spatialreg_1.3-5            zlibbioc_1.52.0            
#>  [23] GenomicRanges_1.58.0        purrr_1.0.2                
#>  [25] R.utils_2.12.3              BiocGenerics_0.52.0        
#>  [27] RCurl_1.98-1.16             TH.data_1.1-2              
#>  [29] rappdirs_0.3.3              sandwich_3.1-1             
#>  [31] GenomeInfoDbData_1.2.13     IRanges_2.40.0             
#>  [33] S4Vectors_0.44.0            terra_1.7-83               
#>  [35] units_0.8-5                 RSpectra_0.16-2            
#>  [37] dqrng_0.4.1                 pkgdown_2.1.1              
#>  [39] DelayedMatrixStats_1.28.0   codetools_0.2-20           
#>  [41] DropletUtils_1.26.0         DelayedArray_0.32.0        
#>  [43] xml2_1.3.6                  scuttle_1.16.0             
#>  [45] tidyselect_1.2.1            UCSC.utils_1.2.0           
#>  [47] memuse_4.2-3                farver_2.1.2               
#>  [49] matrixStats_1.4.1           stats4_4.4.2               
#>  [51] BiocFileCache_2.14.0        jsonlite_1.8.9             
#>  [53] BiocNeighbors_2.0.0         e1071_1.7-16               
#>  [55] survival_3.7-0              systemfonts_1.1.0          
#>  [57] dbscan_1.2-0                tools_4.4.2                
#>  [59] ggnewscale_0.5.0            ragg_1.3.3                 
#>  [61] sfarrow_0.4.1               Rcpp_1.0.13-1              
#>  [63] glue_1.8.0                  SparseArray_1.6.0          
#>  [65] xfun_0.49                   MatrixGenerics_1.18.0      
#>  [67] GenomeInfoDb_1.42.0         EBImage_4.48.0             
#>  [69] dplyr_1.1.4                 HDF5Array_1.34.0           
#>  [71] withr_3.0.2                 BiocManager_1.30.25        
#>  [73] fastmap_1.2.0               boot_1.3-31                
#>  [75] rhdf5filters_1.18.0         bluster_1.16.0             
#>  [77] fansi_1.0.6                 spData_2.3.3               
#>  [79] digest_0.6.37               R6_2.5.1                   
#>  [81] mime_0.12                   textshaping_0.4.0          
#>  [83] colorspace_2.1-1            wk_0.9.4                   
#>  [85] LearnBayes_2.15.1           jpeg_0.1-10                
#>  [87] RSQLite_2.3.8               R.methodsS3_1.8.2          
#>  [89] utf8_1.2.4                  generics_0.1.3             
#>  [91] data.table_1.16.2           class_7.3-22               
#>  [93] httr_1.4.7                  htmlwidgets_1.6.4          
#>  [95] S4Arrays_1.6.0              spdep_1.3-6                
#>  [97] pkgconfig_2.0.3             scico_1.5.0                
#>  [99] rJava_1.0-11                gtable_0.3.6               
#> [101] blob_1.2.4                  SingleCellExperiment_1.28.1
#> [103] XVector_0.46.0              htmltools_0.5.8.1          
#> [105] fftwtools_0.9-11            scales_1.3.0               
#> [107] Biobase_2.66.0              png_0.1-8                  
#> [109] SpatialExperiment_1.16.0    knitr_1.49                 
#> [111] coda_0.19-4.1               nlme_3.1-166               
#> [113] curl_6.0.1                  proxy_0.4-27               
#> [115] cachem_1.1.0                zoo_1.8-12                 
#> [117] rhdf5_2.50.0                BiocVersion_3.20.0         
#> [119] KernSmooth_2.23-24          parallel_4.4.2             
#> [121] arrow_17.0.0.1              AnnotationDbi_1.68.0       
#> [123] desc_1.4.3                  s2_1.1.7                   
#> [125] pillar_1.9.0                grid_4.4.2                 
#> [127] vctrs_0.6.5                 dbplyr_2.5.0               
#> [129] beachmat_2.22.0             sfheaders_0.4.4            
#> [131] cluster_2.1.6               evaluate_1.0.1             
#> [133] zeallot_0.1.0               magick_2.8.5               
#> [135] mvtnorm_1.3-2               cli_3.6.3                  
#> [137] locfit_1.5-9.10             compiler_4.4.2             
#> [139] rlang_1.1.4                 crayon_1.5.3               
#> [141] classInt_0.4-10             fs_1.6.5                   
#> [143] deldir_2.0-4                BiocParallel_1.40.0        
#> [145] assertthat_0.2.1            munsell_0.5.1              
#> [147] Biostrings_2.74.0           tiff_0.1-12                
#> [149] ExperimentHub_2.14.0        patchwork_1.3.0            
#> [151] sparseMatrixStats_1.18.0    bit64_4.5.2                
#> [153] ggplot2_3.5.1               Rhdf5lib_1.28.0            
#> [155] KEGGREST_1.46.0             statmod_1.5.0              
#> [157] SummarizedExperiment_1.36.0 AnnotationHub_3.14.0       
#> [159] igraph_2.1.1                memoise_2.0.1              
#> [161] bslib_0.8.0                 bit_4.5.0