Python arguments are equivalent to long-option arguments (
--arg
), unless otherwise specified. Flags are True/False arguments in Python. The manual for any gget tool can be called from the command-line using the-h
--help
flag.
gget archs4 🐁
Find the most correlated genes to a gene of interest or find the gene's tissue expression atlas using ARCHS4.
Return format: JSON (command-line) or data frame/CSV (Python).
Positional argument
gene
Short name (gene symbol) of gene of interest, e.g. STAT4.
Alternatively: use flag --ensembl
to input an Ensembl gene IDs, e.g. ENSG00000138378.
Optional arguments
-w
--which
'correlation' (default) or 'tissue'.
'correlation' returns a gene correlation table that contains the 100 most correlated genes to the gene of interest. The Pearson correlation is calculated over all samples and tissues in ARCHS4.
'tissue' returns a tissue expression atlas calculated from human or mouse samples (as defined by 'species') in ARCHS4.
-s
--species
'human' (default) or 'mouse'.
Defines whether to use human or mouse samples from ARCHS4.
(Only for tissue expression atlas.)
-o
--out
Path to the file the results will be saved in, e.g. path/to/directory/results.csv (or .json). Default: Standard out.
Python: save=True
will save the output in the current working directory.
Flags
-e
--ensembl
Add this flag if gene
is given as an Ensembl gene ID.
-csv
--csv
Command-line only. Returns results in CSV format.
Python: Use json=True
to return output in JSON format.
-q
--quiet
Command-line only. Prevents progress information from being displayed.
Python: Use verbose=False
to prevent progress information from being displayed.
Examples
gget archs4 ACE2
# Python
gget.archs4("ACE2")
→ Returns the 100 most correlated genes to ACE2:
gene_symbol | pearson_correlation |
---|---|
SLC5A1 | 0.579634 |
CYP2C18 | 0.576577 |
. . . | . . . |
gget archs4 -w tissue ACE2
# Python
gget.archs4("ACE2", which="tissue")
→ Returns the tissue expression of ACE2 (by default, human data is used):
id | min | q1 | median | q3 | max |
---|---|---|---|---|---|
System.Urogenital/Reproductive System.Kidney.RENAL CORTEX | 0.113644 | 8.274060 | 9.695840 | 10.51670 | 11.21970 |
System.Digestive System.Intestine.INTESTINAL EPITHELIAL CELL | 0.113644 | 5.905560 | 9.570450 | 13.26470 | 13.83590 |
. . . | . . . | . . . | . . . | . . . | . . . |
Check out this tutorial by Dave Tang who wrote an R script to create this figure from the gget archs4
JSON output:
More examples
References
If you use gget archs4
in a publication, please cite the following articles:
-
Luebbert, L., & Pachter, L. (2023). Efficient querying of genomic reference databases with gget. Bioinformatics. https://doi.org/10.1093/bioinformatics/btac836
-
Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, Silverstein MC, Ma’ayan A. Massive mining of publicly available RNA-seq data from human and mouse. Nature Communications 9. Article number: 1366 (2018), doi:10.1038/s41467-018-03751-6
-
Bray NL, Pimentel H, Melsted P and Pachter L, Near optimal probabilistic RNA-seq quantification, Nature Biotechnology 34, p 525--527 (2016). https://doi.org/10.1038/nbt.3519