Python arguments are equivalent to long-option arguments (
--arg), unless otherwise specified. Flags are True/False arguments in Python. The manual for any gget tool can be called from the command-line using the-h--helpflag.
gget 8cube 🔬
Query 8cubeDB (snRNA-sequencing data of 8 different mouse strains, tissues, and individuals (four of each sex)) for gene-level specificity metrics and normalized expression values.
Return format: JSON (command-line) or data frame/CSV (Python).
This module was written by Nikhila Swarna.
gget 8cube specificity 🎯
Retrieve ψ and ζ specificity statistics for one or more genes.
gget 8cube specificity <GENES...>
Positional argument
genes
Gene symbols or Ensembl gene IDs. Multiple genes allowed.
Optional arguments
-csv --csv
Returns CSV instead of JSON (command-line only).
Python: Use json=False (default DataFrame) or json=True for JSON.
-o --out
Output file path (CSV or .json depending on --csv).
Python: save=True saves automatically to the current directory.
Flags
-q --quiet
Suppresses progress information.
Python: use verbose=False.
Example
gget 8cube specificity Acsm2 ENSMUSG00000046623.9
# Python
from gget.gget_8cube import specificity
specificity(["Acsm2", "ENSMUSG00000046623.9"])
→ Returns ψ and ζ specificity values for Acsm2.
gget 8cube psi_block 🧩
Retrieve ψ-block (block-level specificity) values for one or more genes.
gget 8cube psi_block <GENES...> --analysis_level <LEVEL> --analysis_type <TYPE>
Positional argument
genes
Gene symbols or Ensembl IDs.
Required arguments
-al --analysis_level
Biological analysis level (e.g., Kidney, Across_tissues).
-at --analysis_type
Partition type (e.g., Sex:Celltype, Sex:Strain).
Optional arguments
-csv --csv
Return CSV instead of JSON.
Python: use json=True for JSON.
-o --out
Output file location.
Flags
-q --quiet
Suppress progress printing.
Example
gget 8cube psi_block Acsm2 \
--analysis_level Kidney \
--analysis_type "Sex:Celltype"
# Python
from gget.gget_8cube import psi_block
psi_block(["Acsm2"], analysis_level="Kidney", analysis_type="Sex:Celltype")
→ Returns ψ-block partition-level specificity scores for Acsm2.
gget 8cube expression 📊
Retrieve mean and variance of normalized expression values for one or more genes.
gget 8cube expression <GENES...> --analysis_level <LEVEL> --analysis_type <TYPE>
Positional argument
genes
Gene symbols or Ensembl IDs. Multiple accepted.
Required arguments
-al --analysis_level
Biological grouping (e.g., Kidney, Across_tissues).
-at --analysis_type
Partition layout (e.g., Sex:Celltype).
Optional arguments
-csv --csv
Return CSV instead of JSON.
Python: use json=True.
-o --out
Output file path.
Flags
-q --quiet
Suppress progress messages.
Example
gget 8cube expression ENSMUSG00000046623.9 \
--analysis_level Across_tissues \
--analysis_type Strain
# Python
from gget.gget_8cube import gene_expression
gene_expression(["ENSMUSG00000046623.9"], analysis_level="Across_tissues", analysis_type="Strain")
→ Returns normalized expression values grouped by cell type and sex.
Example workflow
# Specificity
gget 8cube specificity Gjb4
# ψ-block specificity
gget 8cube psi_block Gjb4 --analysis_level Across_tissues --analysis_type Strain
# Expression values
gget 8cube expression Gjb4 --analysis_level Across_tissues --analysis_type Strain
Python API
from gget.gget_8cube import specificity, psi_block, gene_expression
or
from gget import specificity, psi_block, gene_expression
Notes
- Works with gene symbols and Ensembl IDs (with or without version numbers).
- All three functions accept multiple genes at once.
- Default Python output is a pandas DataFrame; use
json=Truefor JSON. - CLI defaults to JSON, unless
--csvis used.
References
If you use gget 8cube in a publication, please cite:
-
Swarna NP, et al. Determining gene specificity from multivariate single-cell RNA sequencing data (2025). DOI forthcoming.
-
Luebbert, L., & Pachter, L. (2023). Efficient querying of genomic reference databases with gget. Bioinformatics. https://doi.org/10.1093/bioinformatics/btac836
-
Rebboah E, et al. Systematic cell-type resolved transcriptomes of 8 tissues in 8 lab and wild-derived mouse strains captures global and local expression variation (2025). https://doi.org/10.1101/2025.04.21.649844